The Rogers–Ramanujan continued fraction

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

continued fraction ∗

We use a continued fraction expansion of the sign-function in order to obtain a five dimensional formulation of the overlap lattice Dirac operator. Within this formulation the inverse of the overlap operator can be calculated by a single Krylov space method where nested conjugate gradient procedures are avoided. We show that the five dimensional linear system can be made well conditioned using ...

متن کامل

The Szekeres Multidimensional Continued Fraction

In his paper "Multidimensional continued fractions" {Ann. Univ. Sei. Budapest. EOtvOs Sect. Math., y. 13, 1970, pp. 113-140), G. Szekeres introduced a new higher dimensional analogue of the ordinary continued fraction expansion of a single real number. The Szekeres algorithm associates with each fc-tuple (a»,..., ak) of real numbers (satisfying 0 < a< 1) a sequence bx, b2,... of positive intege...

متن کامل

The Random Continued Fraction Transformation

We introduce a random dynamical system related to continued fraction expansions. It uses random combination of the Gauss map and the Rényi (or backwards) continued fraction map. We explore the continued fraction expansions that this system produces as well as the dynamical properties of the system.

متن کامل

The Hurwitz Complex Continued Fraction

The Hurwitz complex continued fraction algorithm generates Gaussian rational approximations to an arbitrary complex number α by way of a sequence (a0, a1, . . .) of Gaussian integers determined by a0 = [α], z0 = α − a0, (where [u] denotes the Gaussian integer nearest u) and for j ≥ 1, aj = [1/zj−1], zj = 1/zj−1−aj . The rational approximations are the finite continued fractions [a0; a1, . . . ,...

متن کامل

A q-CONTINUED FRACTION

Let a, b, c, d be complex numbers with d 6= 0 and |q| < 1. Define H1(a, b, c, d, q) := 1 1 + −abq + c (a + b)q + d + · · · + −abq + cq (a + b)qn+1 + d + · · · . We show that H1(a, b, c, d, q) converges and 1 H1(a, b, c, d, q) − 1 = c − abq d + aq P∞ j=0 (b/d)(−c/bd)j q (q)j(−aq/d)j P∞ j=0 (b/d)(−c/bd)j q (q)j(−aq/d)j . We then use this result to deduce various corollaries, including the followi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 1999

ISSN: 0377-0427

DOI: 10.1016/s0377-0427(99)00033-3